


FIGURE 5-3. Classification key for natural rivers.

reaches, values of Entrenchment and Sinuosity ratios can vary by +/-0.2 units; while values for Width / Depth ratios can vary by +/-2.0 units.

| Stream  | Dominate Bed Material Silt-Clay Sand Gravel Cobble Boulder Bedrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |   |   |         |               |            | WD F      | inuc      | Olana  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|---|---------|---------------|------------|-----------|-----------|--------|
| m TY    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N Ianinod | ക | 4 | DUPC    | (SIT-SIE      | Entrchmnt. | W/D Ratio | Sinuosity |        |
| TYPE, A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |   |   |         |               | < 1.4      | < 12      | 1-1.2     | 000    |
| В       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V.        |   |   | )       |               | 1.4 - 2.2  | > 12      | > 1.2     | 000    |
| ၁       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26/2/26   |   |   |         |               | > 2.2      | > 12      | > 1.2     | 00     |
| ۵       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |   |   |         |               | n/a        | > 40      | n/a       |        |
| DA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |   |   | April 1 | CONT. PER JAN | > 4.0      | < 40      | variable  | 100    |
| Ш       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×         |   |   |         |               | > 2.2      | < 12      | >1.5      | 00     |
| ட       | The Assessment of the Assessme |           |   |   |         |               | < 1.4      | > 12      | > 1.2     | 00     |
| O       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |   |   |         |               | < 1.4      | < 12      | >1.2      | 000 00 |

FIGURE 5-2. Primary delineative criteria for the major stream types.

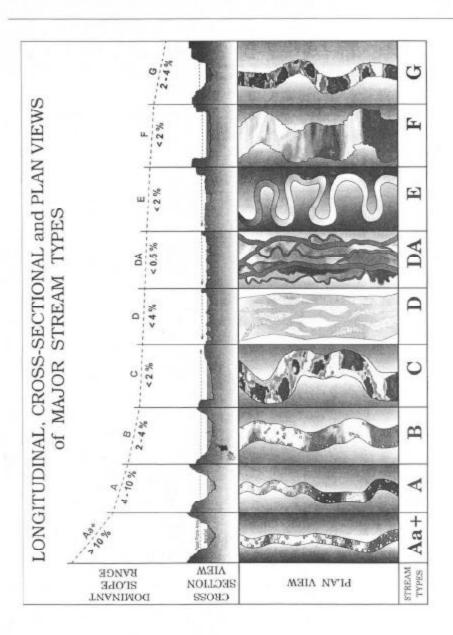



FIGURE 4.2. Broad level stream classification delineation showing longitudinal, cross-sectional, and plan-views of major stream types (from Rosgen, 1994)

| Stream<br>Type | General<br>Description                                                                                                                                                                                                    | Entrenchment<br>Ratio | W/D<br>Ratio       | Sinuosity          | Slope             | Landform/<br>Soils/Features                                                                                                                                                                                                                                                 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aa+            | Very steep, deeply entrenched, debris transport, torrent streams.                                                                                                                                                         | <1.4                  | <12                | 1.0<br>to<br>1.1   | <b>≽</b> 10       | Very high relief. Erosional, bedrock<br>or depositional features; debris flow<br>potential. Deeply entrenched streams.<br>Vertical steps with deep scour pools;<br>waterfalls.                                                                                              |
| A              | Steep, entrenched, cascading, step/pool streams. High energy/debris transport associated with depositional soils. Very stable if bedrock or boulder dominated channel.                                                    | <1.4                  | <12                | 1.0<br>to<br>1.2   | .04<br>to<br>.10  | High relief. Erosional or depositional and bedrock forms. Entrenched and confined streams with cascading reaches. Frequently spaced, deep pools in associated step/pool bed morphology.                                                                                     |
| В              | Moderately entrenched,<br>moderate gradient, riffle<br>dominated channel, with<br>infrequently spaced pools.<br>Very stable plan and profile.<br>Stable banks.                                                            | 1.4<br>to<br>2.2      | >12                | >1.2               | .02<br>to<br>.039 | Moderate relief, colluvial deposition, and/or structural. Moderate entrenchment and W/D ratio. Narrow, gently sloping valleys. Rapids predominate w/scour pools.                                                                                                            |
| С              | Low gradient, meandering, point-bar, riffle/pool, alluvial channels with broad, well defined floodplains.                                                                                                                 | >2.2                  | >12                | >1.4               | <.02              | Broad valleys w/terraces, in association with floodplains, alluvial soils. Slightly entrenched with well-defined meandering channels. Riffle/pool bed morphology.                                                                                                           |
| D              | Braided channel with longitudinal and transverse bars. Very wide channel with eroding banks.                                                                                                                              | n/a                   | >40                | n/a                | <.04              | Broad valleys with alluvium, steeper fans. Glacial debris and depositional features. Active lateral adjustment, w/abundance of sediment supply. Convergence/divergence bed features, aggradational processes, high bedload and bank erosion.                                |
| DA             | Anastomosing (multiple channels) narrow and deep with extensive, well vegetated floodplains and associated wetlands. Very gentle relief with highly variable sinuosities and width/depth ratios. Very stable streambanks. | >2.2                  | Highly<br>variable | Highly<br>variable | <.005             | Broad, low-gradient valleys with fine alluvium and/or lacustrine soils. Anastomosed (multiple channel) geologic control creating fine deposition w/well-vegetated bars that are laterally stable with broad wetland floodplains. Very low bedload, high wash load sediment. |
| Е              | Low gradient, meandering riffle/pool stream with low width/depth ratio and little deposition. Very efficient and stable. High meander width ratio.                                                                        | >2.2                  | <12                | >1.5               | <.02              | Broad valley/meadows. Alluvial materials with floodplains. Highly sinuous with stable, well-vegetated banks. Riffle/pool morphology with very low width/depth ratios.                                                                                                       |
| F              | Entrenched meandering riffle/pool channel on low gradients with high width/depth ratio.                                                                                                                                   | <1.4                  | >12                | >1.4               | <.02              | Entrenched in highly weathered material. Gentle gradients, with a high width/depth ratio. Meandering, laterally unstable with high bank erosion rates. Riffle/pool morphology.                                                                                              |
| G              | Entrenched "gully" step/pool and low width/depth ratio on moderate gradients.                                                                                                                                             | <1.4                  | <12                | >1.2               | .02<br>to<br>.039 | Gullies, step/pool morphology w/moderate slopes and low width/depth ratio. Narrow valleys, or deeply incised in alluvial or colluvial materials, i.e., fans or deltas. Unstable, with grade control problems and high bank erosion rates.                                   |

TABLE 4-1 General stream type descriptions and delineative criteria for broad-level classification (Level I).